Watson, Traci. "AI content is tainting preprints: how moderators are fighting back." Nature, 12 de agosto de 2025. https://doi.org/10.1038/d41586-025-02469-y.
Diversos servidores de preprints —como PsyArXiv, arXiv, bioRxiv y medRxiv— están detectando un aumento en el número de manuscritos que parecen haber sido generados o asistidos por inteligencia artificial o incluso por fábricas de artículos ("paper mills"). Este comportamiento plantea serias dudas sobre la integridad de la ciencia abierta y la velocidad de publicación sin control.
Un caso emblemático involucró un manuscrito titulado “Self-Experimental Report: Emergence of Generative AI Interfaces in Dream States” publicado en PsyArXiv. El estilo estrambótico del contenido, la falta de afiliación del autor y la ausencia de detalles claros sobre el uso de IA llevaron a una alerta lanzada por la psicóloga Olivia Kirtley, quien luego solicitó su eliminación. Aunque el autor afirmó que la IA solo tuvo un papel limitado (como cálculo simbólico y verificación de fórmulas), no lo declaró explícitamente, lo que violó las normas del servidor.
En el servidor arXiv, los moderadores estiman que aproximadamente un 2 % de las presentaciones son rechazadas por tener indicios de IA o ser elaboradas por paper mills.
En bioRxiv y medRxiv, se rechazan más de diez manuscritos al día que resultan sospechosos de ser generados de forma automatizada, dentro de un promedio de 7.000 envíos mensuales
Los servidores de preprints reconocen un incremento reciente en contenido generado por IA, especialmente tras el lanzamiento de herramientas como ChatGPT en 2022. Esto ha generado una crisis creciente en apenas los últimos meses. El Centro para la Ciencia Abierta (Center for Open Science), responsable de PsyArXiv, expresó públicamente su preocupación por esta tendencia.
Un estudio publicado la semana pasada en Nature Human Behavior estima que, en septiembre de 2024, casi dos años después del lanzamiento de ChatGPT, los LLM produjeron el 22 % del contenido de los resúmenes de informática publicados en arXiv y aproximadamente el 10 % del texto de los resúmenes de biología publicados en bioRxiv. En comparación, un análisis de los resúmenes biomédicos publicados en revistas en 2024 reveló que el 14 % contenía texto generado por LLM en sus resúmenes. (imagen de arriba)
Sin embargo, aplicar filtros más rigurosos para detectar contenido automatizado presenta desafíos: requiere recursos adicionales, puede ralentizar el proceso de publicación y genera dilemas sobre qué contenidos aceptar o rechazar sin convertirse en un sistema excesivamente burocrático
La proliferación de contenido no fiable amenaza con erosionar la credibilidad de la ciencia de los repositorios de preprints, que juegan un papel cada vez más relevante en la difusión rápida de descubrimientos. Se vuelve clave que los servicios de preprints implementen mecanismos de detección más sofisticados, promuevan la transparencia respecto al uso de IA en la redacción y mantengan un equilibrio entre agilidad de publicación y rigor científico.
No hay comentarios:
Publicar un comentario